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Abstract –In this paper, an autonomous vehicle capable of operating during large 

periods of time for observation and monitoring is proposed. The vehicle integrates photovoltaic 

panels and a methanol fuel cell, together with a neurobiological inspired control architecture for 

intelligent navigation. In this work, the autonomy of the vehicle is evaluated in several scenarios, 

when the vehicle is moving in mission and when the vehicle is not moving. The energetical 

management module generates recharge missions with a variable priority level depending on the 

batteries level to the mission planner. The biologically inspired neural network architecture 

proposed for nonholonomic mobile robots makes the integration of a kinematic adaptive neuro-

controller for trajectory tracking and an obstacle avoidance adaptive neuro- controller possible. 
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I. Introduction 

The integration of renewable energies on autonomous 

vehicles has become a common practice in recent years. 

A large number of recent projects, seek that the 

autonomous vehicles not only have autonomy from the 

point of view of control and navigation, but also having 

the ability to self-generate energy, which allows to 

perform tasks and / or mission of long-duration. The use 

of photovoltaic solar energy is the most widely used for 

these purposes, applying to different types of autonomous 

vehicles regardless of the medium in which they work 

(land, sea and air). 

I.1. Solar Powered Autonomous Mobile Robots 

The need for different data collection in situ, at 

different scales of time and space, has promoted an effort 

to develop different types of autonomous vehicles that 

enable the collection of such data. These platforms have 

varying capabilities of each communication, durability, 

mobility, capacity and autonomy. Within these different 

platforms, are in addition to others, autonomous 

underwater vehicles (AUV) and Autonomous Surface 

Vehicle (ASV).  According to D. Blidber et al. [1], there 

are three main limitations for autonomous underwater 

vehicles: energy, navigation for a long time and long 

distances, and user communications with the platform. He 

argued that the use of solar energy begins to overcome 

these limitations, adding the submarine's ability to 

regenerate energy when needed, giving the ability to last 

for weeks and months on mission, instead of hours.   D. 

Blidber et al. [2] discuss the power management in 

different situations and find an optimum combination of 

the size needed to store energy, and the travel distance 

measurement and / or works to be undertaken by the 

vehicle this depending on the solar energy available in 

the area. Special effort is made in the balance between 

displacement (speed and distance), and tasks (duration 

and frequency of measurements, number of sensors on 

board). In their study raises a number of scenarios, where 

the energy distribution is done in different ways, 

according to the needs of the mission in question, but it is 

possible to select different settings for each case scenario. 

In [3] the vehicle SAUV II is described, which is an 

autonomous underwater model that uses solar energy for 

long duration missions that require monitoring, 

surveillance, with bi-directional communication in real 

time and underwater instrumentation. 

As an alternative to traditional research ships, with 

their high operating costs and buoys, which are expensive 

to build, deploy and maintain, J. Higginbotham et al. [4] 

proposes the Intergration Ocean Atmosphere Sensor 

System (OASIS), a project for an ASV low-cost, 

reusable, reconfigurable and long-term that is capable of 

in situ measurements, independently and for long periods 

of time.  

Another vehicle surface, the AAS Endurance, is 

detailed by H. Klinck et al. [5], as a project to develop in 

three years driven by the Austrian Society for innovation 

in computer science, State University of Austria and the 

Oregon State University. It is an autonomous sailing boat, 

which uses sensors, actuators and intelligent control 

system to manage without being driven. This autonomous 

marine vehicle has special equipment for the study of 

marine mammals. It is noteworthy that it has solar panels 

that generate up to 285W, and a methanol fuel cell, that 

supplies auxiliary 65W.  

In this paper, an autonomous vehicle capable of 
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operating during large periods of time for observation 

and monitoring is proposed. The vehicle integrates 

photovoltaic panels and a methanol fuel cell, together 

with a neurobiological inspired control architecture for 

intelligent navigation. In this work, the autonomy of the 

vehicle is evaluated in several scenarios, when the 

vehicle is moving in mission and when the vehicle is not 

moving. The energetical management module generates 

recharge missions with a variable priority level 

depending on the batteries level to the mission planner. 

I.2. Autonomous Navigation with obstacle avoidance 

using neural networks 

Several heuristic approaches based on neural networks 

(NNs) have been proposed for identification and adaptive 

control of nonlinear dynamic systems. More recently, the 

efforts have been directed toward the development of 

control schemes which, besides providing improved 

performance, can be proved to be stable [6], [7]. 

The study of autonomous behaviour has become an 

active research area in the field of robotics. Biological 

organisms are a clear example that this short of learning 

is possible in spite of what, from an engineering 

standpoint, seem to be insurmountable difficulties: noisy 

sensors, unknown kinematics and dynamics, nostationary 

statistics, and so on. A related form of learning is known 

as operant conditioning [8]. Chang and Gaudiano [9] 

introduce a neural network for obstacle avoidance that is 

based on a model of classical and operant conditioning.  

In the classical conditioning paradigm, learning occurs 

by repeated association of a Conditioned Stimulus (CS), 

which normally has no particular significance for an 

animal, with an Unconditioned Stimulus (UCS), which 

has significance for an animal and always gives rise to an 

Unconditioned Response (UCR). The response that 

comes to be elicited by the CS after classical conditioning 

is known as the Conditioned Response (CR) [10]. Hence, 

classical conditioning is the putative learning process that 

enables animals to recognize informative stimuli in the 

environment. 

In the case of operant conditioning, an animal learns 

the consequences of its actions. More specifically, the 

animal learns to exhibit more frequently a behaviour that 

has led to reward in the past, and to exhibit less 

frequently a behaviour that led to punishment. In the field 

of neural networks research, it is often suggested that 

neural networks based on associative learning laws can 

model the mechanisms of classical conditioning, while 

neural networks based on reinforcement learning laws 

can model the mechanisms of operant conditioning [9]. 

The reinforcement learning is used to acquire navigation 

skills for autonomous vehicles, and updates both the 

vehicle model and optimal behaviour at the same time 

[11]-[15].  

In this paper, a biologically inspired architecture that 

makes possible the integration of a kinematic adaptive 

neuro-controller for trajectory tracking and an obstacle 

avoidance adaptive neuro- controller is proposed for 

nonholonomic mobile robots. The kinematic adaptive 

neuro-controller is a real-time, unsupervised neural 

network that learns to control a nonholonomic mobile 

robot in a nonstationary environment, which is termed 

Self-Organization Direction Mapping Network 

(SODMN), and combines associative learning and Vector 

Associative Map (VAM) learning to generate 

transformations between spatial and velocity coordinates. 

The transformations are learned in an unsupervised 

training phase, during which the robot moves as a result 

of randomly selected wheel velocities [14]. The robot 

learns the relationship between these velocities and the 

resulting incremental movements. 
The obstacle avoidance adaptive neuro-controller is a 

neural network that learns to control avoidance behaviors 

in a mobile robot based on a form of animal learning 

known as operant conditioning. Learning, which requires 

no supervision, takes place as the robot moves around a 

cluttered environment with obstacles. The neural network 

requires no knowledge of the geometry of the robot or of 

the quality, number, or configuration of the robot’s 

sensors. The efficacy of the proposed neural architecture 

is tested experimentally by a differentially driven mobile 

robot. 

II. Description of the Solar Powered 

Autonomous Mobile Robot 

(CHAMAN) 

The biologically inspired proposed control algorithm, 

power management and monitoring modules are 

implemented on a mobile robot from the Polytechnic 

University of Cartagena (UPCT) named “CHAMAN”. 

The solar powered autonomous mobile platform has 

two driving wheels (in the rear) mounted on the same 

axis and two passive supporting wheels (in front) of free 

orientation. The two driving wheels are independently 

driven by two DC-motors to achieve the motion and 

orientation. 

The solar vehicle has two panels of 593x502x22.6 

mm, in serial connection providing a charge current of 

1.78A at 24 volts. Indeed, the vehicle incorporates a 

methanol fuel cell providing 2.20A at 24 volts. The 

currents flows are analysed in line with current sensors 

connected with a measurement system based in the 

Compact RIO technology of National Instruments. Some 

perception elements can be disconnected to reduce the 

consumption in the vehicle (see Figure 1).  
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Fig 1. Solar Vehicle in operation. 

 

The vehicle has a CAN bus network as an internal 

field bus. This network carries sensorial information as 

motor data and commands and ultrasonic measurements. 

The ultrasonic system consists on a ring of ultrasonic 

sensors, four in the sides and one in the front.  As a 

processing unit the vehicles incorporate an embedded 

computer and a programmable automation controller for 

energy monitoring. The vehicle incorporate an internal 

Ethernet network, the main devices connected are a video 

server, a switch, the embedded computer and de PAC. 

This internal network is connected to the local network of 

our laboratory via WIFI. The vehicle includes an inertial 

unit with accelerometers and gyrostats in the 3 axis for 

positioning. From this unit the system obtains the 

inclination, and relative orientation and positioning. The 

vehicle incorporates also a magnetometer in the front part 

of the vehicle to obtain an absolute orientation reference 

based on the earth magnetic field. For surveillance, 

monitoring and obstacle avoidance the vehicle includes a 

Laser sensor and a video camera. The video stream is 

stored in the hard disk of the embedded computer; also 

the system can make photos of scenes (see Figure 2).   

 

 
Fig 2. Embedded Computer and Power Electronics of the solar 

vehicle. 

III. Power Management of Autonomous 

Vehicle   

The power management module makes measurement 

of the main voltages and currents of the power systems, 

and make balances, estimations and predictions about the 

energy consumption and autonomies of the missions. The 

power management module generates recharge missions 

with the solar panels and fuel cell which has a priority 

level related with the charge level of the batteries (see 

Figure 3). The power management algorithms are 

executed over a NI CRIO 9074, and the interaction with 

the navigation system is made over the internal Ethernet 

communication channel of the vehicle. 

 

 
Fig. 3. Hardware for power Management. 

 

The average consumption and energy inputs to the 

vehicle are shown in Table I. On the other hand, the 

energy in vehicle is shown in Table II.  The power 

management module estimates the maximum duration of 

the energy in vehicle depending if the vehicle is resting or 

in mission. When the vehicle is in mission all the device 

and modules are running and the consumption is about 

4.3A, when the vehicle is resting, the motors and laser 

sensor are disconnected and the consumption is about 1.3 

A. In the resting state the vision system is working, and 

therefore the vehicle is making visual observation. The 

management module estimates the energetic autonomy of 

the vehicle depending on the working state and the solar 

energetic contribution. If the vehicle is permanently in 

the resting state, the autonomy is about 120 days, but if 

the vehicle is permanently in mission, the autonomy is 

reduced to about 2 days and 13 hours (see Table III-VI). 
 

TABLE I 

CONSUMPTION AND ENERGY INPUTS 

Elements Values 

Consumption without 

movement 
1.3 A 

Consumption with 

movement 
4.3 A 

Solar Contribution 1.6 A 

Fuel Cell Contribution 2.2 A 

 

TABLE II 

ENERGY IN VEHICLE  

Elements Values at 24V 

Batteries 90 Ah 

Fuel Cell 2.200 Ah 

 

TABLE III 

ENERGY BALANCE AT REST FOR ONE DAY 

Elements Values at 24V 

Mission Time 24 h 

Daily Consumption 31.2 Ah 

Solar Contribution 12.8 Ah 

Fuel Cell Contribution 18.4 Ah 

Duration at rest 119.5 days 
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TABLE IV 

ENERGY BALANCE AT MISSION FOR ONE HOUR  

WITHOUT SOLAR CONTRIBUTION 

Elements Values at 24V 

Mission Time 1 h 

Mission Consumption 4.3 Ah 

Solar Contribution 0 Ah 

Fuel Cell Contribution 2.2 Ah 

Generated Energy 2.2 Ah 

Batteries Contribution 2.1 Ah 

Recharge time mission 58 min 

 

TABLE V 

ENERGY BALANCE AT MISSION FOR ONE HOUR  

WITH SOLAR CONTRIBUTION 

Elements Values at 24V 

Mission Time 1 h 

Mission Consumption 4.3 Ah 

Solar Contribution 1.6 Ah 

Fuel Cell Contribution 2.2 Ah 

Generated Energy 3.8 Ah 

Batteries Contribution 0.5 Ah 

Recharge time mission 7.8  min 

 

TABLE VI 

ENERGY BALANCE AT MISSION FOR ONE DAY 

Elements Values at 24V 

Mission Time 24 h 

Mission Consumption 103.2 Ah 

Solar Contribution 15 Ah 

Fuel Cell Contribution 52.8 Ah 

Generated Energy 67.8 Ah 

Batteries Contribution 35.4 Ah 

Maximum Operation 

Time 

2 days 13 

hours 

 

IV. Autonomous Navigation with 

Avoidance of Obstacle Based on a 

Neurobiologically Inspired Neural 

Network Architecture 

 Figure 4(a) illustrates our proposed neural 

architecture. The trajectory tracking control without 

obstacles is implemented by the SODMN and a neural 

network of biological behaviour implements the 

avoidance behaviour of obstacles. 

IV.1. Self-Organization Direction Mapping Network 

(SODMN) 

The transformation of spatial directions to wheels 

angular velocities is expressed like a linear mapping and 

is shown in Fig. 1(b). The spatial error is computed to get 

a spatial direction vector (DVs). The DVs is transformed 

by the direction mapping network elements Vik to 

corresponding motor direction vector (DVm). On the 

other hand, a set of tonically active inhibitory cells, 

which receive broad-based inputs that determine the 

context of a motor action, was implemented as a context 

field. The context field selects the Vik elements based on 

the wheels angular velocities configuration. 

 ,  ,  d d dx y   ,  ,  x y 
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Fig. 4. a) Neural architecture for reactive and adaptive 

navigation of a mobile robot. b) Self-organization direction 

mapping network for the trajectory tracking of a mobile robot. 

A speed-control GO signal acts as a non-specific 

multiplicative gate and controls the movement’s overall 

speed. The GO signal is an input from a decision centre 

in the brain, and starts at zero before movement and then 

grows smoothly to a positive value as the movement 

develops. During the learning, the GO signal is inactive. 

Activities of cells of the DVs and DVm are 

represented in the neural network by quantities (S1, S2, ..., 

Sm) and (R1, R2, ..., Rn), respectively. The direction 

mapping is formed with a field of cells with activities Vik. 

Each Vik cell receives the complete set of spatial inputs 

Sj, j = 1, ..., m, but connects to only one Ri cell. The 

direction mapping cells (
knV ) compute a 

difference of activity between the spatial and motor 

direction vectors via feedback from DVm. During 

learning, this difference drives the adjustme-nt of the 

weights. During performance, the difference drives DVm 

activity to the value encoded in the learned mapping. 

A context field cell pauses when it recognizes a 

particular velocity state (i.e., a velocity configuration) on 

its inputs, and thereby disinhibits its target cells. The 

target cells (direction mapping cells) are completely shut 

off when their context cells are active (see Fig. 4(b)). 

Each context field cell projects to a set of direction 

mapping cells, one for each velocity vector component. 

Each velocity vector component has a set of direction 

mapping cells associated with it, one for each context. A 

cell is “off” for a compact region of the velocity space. It 

is assumed for simplicity that only one context field cell 

turns “off” at a time. The centre context field cell is “off” 
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when the angular velocities are in the centre region of the 

velocity space. The “off” context cell enables a subset of 

direction mapping cells through the inhibition variable ck, 

while “on” context cells disable to the other subsets. 

The learning is obtained by decreasing weights in 

proportion to the product of the presynaptic and 

postsynaptic activities [15]. The training is done by 

generating random movements, and by using the resulting 

angular velocities and observed spatial velocities of the 

mobile robot as training vectors to the direction mapping 

network. 

IV.2. Neural Network for the Avoidance Behaviour 

(NNAB) 

Grossberg proposed a model of classical and operant 

conditioning, which was designed to account for a variety 

of behavioural data on learning in vertebrates [7], [9]. 

Our implementation is based in the Grossberg’s 

conditioning circuit, which follows closely that of 

Grossberg & Levine [10] and Chang & Gaudiano [9], and 

is shown in Figure 5. 
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Fig. 5. Neural Network for the avoidance behaviour. 

 

In this model the sensory cues (both CSs and UCS) are 

stored in Short Term Memory (STM) within the 

population labelled S, which includes competitive 

interactions to ensure that the most salient cues are 

contrast enhanced and stored in STM while less salient 

cues are suppressed. The population S is modelled as a 

recurrent competitive field in simplified discrete-time 

version, which removes the inherent noise, efficiently 

normalizes and contrast-enhances from the ultrasound 

sensors activations. In the present model, the CS nodes 

correspond to activation from the robot’s ultrasound 

sensors. In the network Ii represents a sensor value which 

codes proximal objects with large values and distal 

objects with small values. The network requires no 

knowledge of the geometry of the mobile robot or the 

quality, number, or distribution of sensors over the 

robot’s body. 

The drive node D corresponds to the 

Reward/Punishment component of operant conditioning 

(an animal/robot learns the consequences of its own 

actions). Learning can only occur when the drive node is 

active. Activation of drive node D is determined by the 

weighted sum of all the CS inputs, plus the UCS input, 

which is presumed to have a large, fixed connection 

strength. The drive node D is active when the robot 

collides with an obstacle. Then the unconditioned 

stimulus (USC) in this case corresponds to a collision 

detected by the mobile robot. The activation of the drive 

node and of the sensory nodes converges upon the 

population of polyvalent cells P. Polyvalent cells require 

the convergence of two types of inputs in order to 

become active. In particular, each polyvalent cell 

receives input from only one sensory node, and all 

polyvalent cells also receive input from the drive node D. 

Finally, the neurons (xmi) represent the response 

conditioned or unconditioned and are thus connected to 

the motor system. The motor population consists of nodes 

(i.e., neurons) encoding desired angular velocities of 

avoidance. When driving the robot, activation is 

distributed as a Gaussian centred on the desired angular 

velocity of avoidance. The use of a Gaussian leads to 

smooth transitions in angular velocity even with few 

nodes. 

The output of the angular velocity population is 

decomposed by SODMN into left and right wheel angular 

velocities. A gain term can be used to specify the 

maximum possible velocity. In NNAB the proximity 

sensors initially do not propagate activity to the motor 

population because the initial weights are small or zero. 

The robot is trained by allowing it to make random 

movements in a cluttered environment. Whenever the 

robot collides with an obstacle during one of these 

movements (or comes very close to it), the nodes 

corresponding to the largest (closest) proximity sensor 

measurements just prior to the collision will be active. 

Activation of the drive node D allows two different kinds 

of learning to take place: the learning that couples 

sensory nodes (infrared or ultrasounds) with the drive 

node (the collision), and the learning of the angular 

velocity pattern that existed just before the collision. 

The first type of learning follows an associative 

learning law with decay. The primary purpose of this 

learning scheme is to ensure that learning occurs only for 

those CS nodes that were active within some time 

window prior to the collision (UCS). The second type of 

learning, which is also of an associative type but 

inhibitory in nature, is used to map the sensor activations 

to the angular velocity map. By using an inhibitory 

learning law, the polyvalent cell corresponding to each 

sensory node learns to generate a pattern of inhibition 

that matches the activity profile active at the time of 

collision. 

Once learning has occurred, the activation of the 

angular velocity map is given by two components (see 

Figure 6). An excitatory component, which is generated 

directly by the sensory system, reflects the angular 

velocity required to reach a given target in the absence of 

obstacles. The second, inhibitory component, generated 

by the conditioning model in response to sensed 

obstacles, moves the robot away from the obstacles as a 
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result of the activation of sensory signals in the 

conditioning circuit. 
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Fig. 6. Positive Gaussian distribution represents the angular 

velocity without obstacle and negative distribution represents 

activation from the conditioning circuit. The summation represents the 

angular velocity that will be used to drive the mobile robot. 

V. Experimental Results 

High-level control algorithms (SODMN and NNAB) 

are written in VC++ and run with a sampling time of 10 

ms on a remote server (a Pentium IV processor). The 

lower level control layer is in charge of the execution of 

the high-level velocity commands. It consists of a Texas 

Instruments TMS320C6701 Digital Signal Processor 

(DSP). 

Figure 7 shows approach behaviours and the tracking 

of a trajectory by the mobile robot with respect to the 

reference trajectory. 
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Fig. 7. Adaptive control by the SODMN. a) Approach behaviours. 

The symbol X indicates the start of the mobile robot and Ti indicates 

the desired reach. b) Tracking control of a desired trajectory. c) Real-

time tracking performance. 

Figure 8 illustrates the mobile robot’s performance in 

the presence of several obstacles. The mobile robot starts 

from the initial position labelled X and reaches a desired 

position. During the movements, whenever the mobile 

robot is approaching an obstacle, the inhibitory profile 

from the conditioning circuit (NNAB) changes the 

selected angular velocity and makes the mobile robot turn 

away from the obstacle. 

(a) 

(b) 
Fig. 8. Trajectory followed by the mobile robot in presence of 

obstacles using the NNAB. 
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VI. Conclusion 

The result obtained for this work was to design an 

autonomous electric vehicle for long-term operations, for 

which work two aspects: the energy and navigation. The 

energetic aspect is addressed by including photovoltaic 

panels, a fuel cell and a module manager, monitor power 

status of the vehicle and the navigation aspect is 

addressed by creating a multi-sensory architecture and 

multi-network on the basis of cortical areas involved in 

motion planning, trajectory and the task. In this article, 

we have implemented a neurobiologically inspired neural 

architecture for trajectory tracking and avoidance 

behaviours of a solar powered autonomous mobile robot. 

A biologically inspired neural network for the spatial 

reaching tracking has been developed. This neural 

network is implemented as a kinematical adaptive neuro-

controller. The avoidance behaviours of obstacles were 

implemented by a neural network that is based on a form 

of animal learning known as operant conditioning.  
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